
 

216 

IS
B

N
 :

 9
7
8

-2
-4

9
3
6
5
9

-1
2

- 
5
  

  
  
  

  
  
  
  
  
  

  
  

  
  
  

  
  
  
  
  
  

  
 

 

V
O

L
 4

 N
 °

 1
2

 J
u

in
 2

0
2

5
 

LES MATHEMATIQUES AU SERVICE DES SCIENCES 

PHYSIQUES : EXEMPLE DES EQUATIONS 

DIFFERENTIELLES DANS LE PROGRAMME 

SENEGALAIS DE PHYSIQUE DE TERMINALE 

SCIENTIFIQUE 

 
Moustapha THIAM 

Docteur en Physique 

Inspecteur de l’Enseignement Moyen Secondaire/ Physique – Chimie 

Inspection d’Académie de Saint Louis/ Sénégal 

m.thiamphysics@hotmail.fr 

Abdou DIOUF 

Docteur en Mathématiques 

Inspecteur de l’Enseignement Moyen Secondaire/ Mathématiques 

Inspection d’Académie de Fatick/ Sénégal 

Djibril FALL 

Professeur d’Enseignement Secondaire de Sciences Physiques 

Institution Sainte Jeanne d’Arc de Dakar/ Sénégal 

 

Résumé 
 

Cette étude dont le point d’ancrage est la didactique des sciences et 

des mathématiques, s’intéresse particulièrement à l’interdisciplinarité 

mathématiques-physique. Elle porte sur les équations différentielles en tant 

que pont entre les programmes sénégalais de mathématiques et de physique 

de niveau terminal scientifique. Tout d’abord, nous avons fait le point sur les 

attendus des programmes. Les objectifs d’apprentissages sur les équations 

différentielles dans le référentiel de programme de mathématiques et sur les 

chapitres de physique faisant intervenir les équations différentielles ont été 

rappelés. Ensuite, une présentation a été faite sur la notion d’équations 

différentielles dans le cadre des mathématiques. Quelques exemples de leurs 

applications en physique ont été illustrées. Enfin, des propositions basées sur 

l’interdisciplinarité et, allant dans le sens de l’amélioration des 

enseignements-apprentissages des équations différentielles et des 

phénomènes physiques dont l’évolution est régie par celles-ci ont été 

formulées. 

Mots-clés : Equations différentielles, interdisciplinarité mathématiques-

physique. 
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Abstract 
 

This study, which is anchored in the didactics of sciences and mathematics, 

is particularly interested in the interdisciplinarity of mathematics and 

physics. It focuses on differential equations as a bridge between the 

Senegalese curricula of mathematics and physics at the scientific terminal 

level. First of all, we reviewed the expectations of the programmes. The 

learning objectives on differential equations in the mathematics programme 

framework and on the chapters of physics involving differential equations 

were recalled. Then, a presentation was made on the concept of differential 

equations in the context mathematics. Some examples of their applications in 

physics were illustrated. Finally, proposals based on interdisciplinarity, 

aimed at improving the teaching and learning of differential equations and 

the physical phenomena whose evolution is governed by them, were 

formulated. 

Keywords: Differential Equations, Interdisciplinarity Mathematics-physics. 

 

Introduction 

 

Les disciplines scientifiques, peu nombreuses encore au 

début du XXe siècle se sont vu adjoindre de nouvelles disciplines 

pour dépasser assez rapidement la centaine. La multiplication 

des découvertes a abouti à une subdivision des sciences car il 

devenait impossible pour une même personne de maitriser tout 

le savoir de l’époque. (Roegiers, 2001, p 28-29) Malgré cette 

prolifération des champs de savoir, certaines disciplines 

continuent d’entretenir des relations très intimes. C’est le cas des 

mathématiques et de la physique qui, depuis toujours, 

maintiennent des rapports symbiotiques sur le plan 

épistémologique et sur le plan didactique. Les mathématiques et 

la physique partagent de nombreux objets d’enseignement. Il 

s’agit de notions et de contenus : nombres, grandeurs, 

proportionnalité. Il s’agit aussi de démarches : investigation, 

modélisation, etc. Il s’agit encore de compétences : 

représentation, calcul, raisonnement ou même recherche. 

(Robine, 2017) Le terme physique-mathématiques est de plus en 
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plus utilisé. Il s’agit d’un domaine se situant à l'intersection des 

mathématiques et de la physique. Son objectif principal est 

d’utiliser les mathématiques pour résoudre des problèmes de 

physique spécifiques mais aussi de développer des modèles 

mathématiques précis et rigoureux pour décrire les phénomènes 

physiques observés dans le monde réel. De ce point de vue, les 

mathématiques peuvent être considérées comme modèles de 

phénomènes physiques. A la question philosophique de savoir : 

« Peut-on faire de la physique sans les mathématiques ? », 

historiquement, plusieurs réponses ont été apportées. La réponse 

platonicienne (~ - 400), essentialiste : « les mathématiques sont 

nécessaires en physique car le monde est intrinsèquement 

mathématique » ; la réponse galiléenne (1623 ; 1632) : « les 

mathématiques sont si efficaces en physique car le monde 

physique et le monde mathématique sont très proches (close 

homogeneity) » ; la réponse de Berkley (1710), pragmatique : 

« les mathématiques sont un bon outil pour la physique » ; la 

réponse kantienne (1787), cognitiviste : « nous comprenons le 

monde mathématiquement, c’est grâce aux concepts 

mathématiques que nous pouvons nous forger une 

représentation des objets dont nous n’avons pas une expérience 

directe ». (Boniolo et al, 2005) 

En didactique des sciences, l’activité du physicien est 

décrite comme une activité de modélisation, avec des va-et-vient 

entre le monde physique et des représentations mathématiques 

(Bunge, 1973, Bing & Redish 2009). Les mathématiques 

permettent de formaliser les phénomènes physiques pendant que 

la physique donne du sens aux abstractions mathématiques. 

Parmi les outils mathématiques de la physique, les équations 

différentielles, une notion qui vit depuis presque quatre siècles 

et qui assume remarquablement le rôle de modèle pour l’étude 

de très nombreux phénomènes physiques (Saglam, 2004), 

occupent une place centrale. Dans les programmes d’étude 

sénégalais, les équations différentielles sont abordées en 
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mathématiques en classe de Terminale scientifique. Dans le 

programme de physique de Terminale scientifique également, un 

bon nombre des lois étudiées se présentent sous forme 

d’équations différentielles. Cette forte intrication des savoirs 

mathématiques dans le programme de physique ne manque pas 

de soulever des enjeux épistémologiques, didactiques et 

pédagogiques ? Comment exploiter alors le potentiel 

interdisciplinaire entre mathématiques et physique à travers les 

équations différentielles pour permettre une meilleure 

appropriation des savoirs par les élèves ? 

Cette étude vise à mettre en exergue le rôle des équations 

différentielles en tant qu’outil mathématique puissant dans 

l’exécution du programme de physique de terminale scientifique 

sénégalais et combien une intégration interdisciplinaire est 

nécessaire pour optimiser les enseignements-apprentissages 

dans les deux disciplines. Nous examinerons d’abord les 

programmes scolaires pour voir s’ils sont favorables à une 

approche interdisciplinaire ou s’ils cloisonnent les 

enseignements-apprentissages. Nous présenterons ensuite les 

équations différentielles dans le contexte mathématique et nous 

illustrerons quelques-unes de leurs applications à travers des 

exemples concrets de phénomènes physiques extraits du 

programme sénégalais de niveau terminal scientifique. Enfin, 

des pistes pouvant permettre de rendre plus efficace les 

enseignements-apprentissages des équations différentielles dans 

les deux disciplines, en mettant à contribution 

l’interdisciplinarité mathématiques-physique seront proposées. 

 

1. Ce que disent les programmes 

 

    1.1. Le programme de mathématiques 

Les programmes de mathématiques sont présentés dans 

un tableau avec trois colonnes. Une première colonne où sont 

listés les contenus, une deuxième avec des commentaires et une 
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troisième où on retrouve les compétences exigibles. En 

Terminales S2 et S4, classes à vocation scientifique tournée vers 

les sciences expérimentales il est précisé que « de nombreux 

concepts mathématiques seront utilisés dans les autres 

disciplines particulièrement en sciences physiques. Ce sera 

l’occasion au travers d’une collaboration interdisciplinaire de 

décloisonner l’enseignement. » Les contenus à enseignés sont : 

Equation différentielle linéaire homogène du premier ordre à 

coefficients constants : existence et unicité de la solution 

vérifiant une condition initiale donnée ; Equation différentielle 

linéaire homogène du second ordre à coefficients constants : 

existence et unicité (admises) de la solution vérifiant des 

conditions initiales données ; Equation différentielle linéaire du 

premier et du second ordre à coefficients constants avec second 

membre. On y ajoute en commentaire qu’ « Aucune théorie 

générale ne sera faite, l’objectif de cette partie est de savoir 

résoudre les équations différentielles. L’utilisation des 

équations différentielles en sciences physiques est un champ 

intéressant pour la recherche d’activités préparatoires ou 

d’exercices. » En Terminales S1 et S3, classes à vocation 

scientifique orientée vers les sciences exactes et la technologie, 

l’enseignement des équations porte sur les contenus suivants : 

Résolution de l’équation homogène du premier ordre ; 

Résolution de l’équation homogène du second ordre : recherche 

de solutions à l’aide de l’équation caractéristique ; Exemple de 

résolution d’une équation différentielle linéaire avec second 

membre du premier ordre à coefficients constants ; Exemples de 

résolution d’une équation différentielle du second ordre à 

coefficients constants avec un second membre de la forme :  A 

cos αt + B sin αt. Comme en TS2 et TS4, en commentaire, le lien 

avec la physique pour une approche interdisciplinaire est 

mentionné comme suit : « En relation avec l’enseignement des 

sciences physiques (mécanique du point, circuits électriques, on 

étudiera quelques exemples simples satisfaisant à une loi 
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d’évolution et à une condition initiale, afin de mettre en évidence 

certains phénomènes physiques (amortissement, oscillation). » 

(MEN, 2006) 

 

    1.2. Le programme de physique 

Dans le programme des classes de Terminales scientifiques 

(quasiment le même en TS1, TS2, TS3 et TS4), les équations 

différentielles sont présentes pratiquement dans toutes les parties. 

En mécanique, on les retrouve dès le premier chapitre en 

cinématique avec les mouvements sinusoïdaux, définis à partir de 

fonctions solutions d’équations différentielles. En établissant la 

relation entre l’accélération et la variable de position (fonction 

solution), on obtient l’équation différentielle correspondante. 

Ensuite en dynamique, surtout avec les oscillations mécaniques, on 

retrouve les mouvements sinusoïdaux mais cette fois-ci les 

équations différentielles sont établies suite à l’application de la 

deuxième loi de Newton. En électricité, l’évolution des circuits 

(R,L), (R,C), (R,L,C) est régie par des équations différentielles. Là 

également, on applique la loi d’additivité des tensions qui aboutit à 

une équation différentielle. Enfin, en physique nucléaire, les 

équations différentielles interviennent dans l’étude du phénomène 

de désintégration radioactive. Le programme de sciences physiques 

se présente sous forme de tableau suivi de commentaires. Dans le 

tableau, on a une première colonne où sont listés les objectifs 

d’apprentissage, une deuxième avec les contenus et une dernière 

pour les activités d’apprentissage. Dans les objectifs 

d’apprentissage, il n’est pas formellement demandé de procéder à 

la résolution d’équations différentielles, celle-ci devant être prise 

en charge par le cours de mathématiques. Généralement, on attend 

de l’élève pour un problème donné, qu’il puisse, par application 

d’une loi de la physique, établir l’équation différentielle associée. 

Ensuite il donne la forme de la solution sans démonstration. Ou bien 

encore, et c’est le cas le plus fréquent, après avoir établi l’équation, 

une fonction lui est présentée et il lui est demandé de vérifier que 
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cette fonction est solution de l’équation en question. Néanmoins le 

professeur de sciences physiques est appelé à prendre en charge lui-

même certains prérequis d’ordre mathématique, surtout s’ils ne sont 

pas encore traités dans le cours de mathématiques à cause des 

décalages qui peuvent arriver dans les progressions entre les deux 

disciplines. Par exemple, pour le chapitre sur la cinématique, on lit 

en commentaire : « Au fur et à mesure du déroulement de la leçon 

le professeur veillera à apporter les compléments mathématiques 

utiles (notions de dérivée et primitive) à partir d’exemples 

simples. »  Pour le chapitre sur les oscillations électriques 

également, il est mentionné dans les commentaires : « A partir de 

l'additivité des tensions, établir l'équation différentielle de cette 

décharge : 𝐿
𝑑2𝑞

𝑑𝑡2
+

𝑞

𝐶
= 0. Etablir la solution de l'équation 

différentielle en tenant compte des conditions initiales. On 

déterminera la période propre T0 et la pulsation propre ω0. » Pour 

l’équation : 𝐿
𝑑2𝑞

𝑑𝑡2 + 𝑅
𝑑𝑞

𝑑𝑡
+

𝑞

𝐶
= 0, il est précisé que la résolution est 

hors programme. (MEN, 2008) 

Cet aperçu des programmes illustre l’importance des 

équations différentielles aussi bien en mathématiques qu’en 

physique. Il montre également combien les équations 

différentielles constituent-elles un pont didactique entre les 

mathématiques et la physique. Il est à noter également que, du 

point de vue institutionnel, l’approche interdisciplinaire est bien 

une recommandation. 

 

2. Les équations différentielles en mathématiques 

 

    2.1. Notion d’équations différentielles 

Soit la fonction 𝑓 ∶  𝑥 ↦  𝑒4𝑥. 

On se propose de calculer la dérivée 𝑓′ de 𝑓 et de monter que, 

pour tout nombre réel 𝑥, on a : 𝑓′(𝑥) − 4𝑓(𝑥) = 0. 

On a 𝑓′(𝑥) = 4𝑒4𝑥 et 𝑓′(𝑥) − 4𝑓(𝑥) = 4𝑒4𝑥 − 4𝑒4𝑥 = 0 



 

223 

IS
B

N
 :

 9
7
8

-2
-4

9
3
6
5
9

-1
2

- 
5
  

  
  
  

  
  
  
  
  
  

  
  

  
  
  

  
  
  
  
  
  

  
 

 

V
O

L
 4

 N
 °

 1
2

 J
u

in
 2

0
2

5
 

La fonction 𝑓 est dérivable sur ℝ. Elle est liée à sa dérivée 𝑓′ 

par la relation : 𝑓′ − 4𝑓 = 0. 

Un autre exemple : On donne la fonction 𝑔 ∶  𝑥 ↦  𝑠𝑖𝑛5𝑥 

On calcule la dérivée 𝑔′′ de 𝑔 et on montre que, pour tout 

nombre réel 𝑥, on a : 𝑔′′(𝑥) + 25𝑔(𝑥) = 0. 

On a 𝑔′(𝑥) = 5𝑐𝑜𝑠5𝑥 et 𝑔′′(𝑥) = −25𝑠𝑖𝑛5𝑥 

alors 𝑔′′(𝑥) + 25𝑔(𝑥) = −25𝑠𝑖𝑛5𝑥 + 25𝑠𝑖𝑛5𝑥 = 0 . Soit la 

relation 𝑔′′ + 25𝑔 = 0. 

Par définition, une relation entre une fonction inconnue et ses 

dérivées successives est appelée équation différentielle. La 

fonction inconnue est souvent notée 𝒚 et ses dérivées 

successives 𝒚′, 𝒚′′, 𝒚′′′, …  

Une équation différentielle est dite d’ordre 𝒏 lorsque le plus 

grand ordre des dérivées intervenant dans cette équation est 𝒏. 

Exemples : 𝑓′ − 4𝑓 = 0 est une équation différentielle du 

premier ordre ; 𝑔′′ + 25𝑔 = 0 est une équation différentielle du 

second ordre. 

Toute fonction vérifiant une équation différentielle sur un 

intervalle ouvert 𝑲 est appelée solution ou intégrale sur 𝑲  de 

cette équation. 

Exemples : 𝑓(𝑥) = 𝑒4𝑥 est solution de l’équation 𝑦′ − 4𝑦 = 0 ; 
𝑔(𝑥) = 𝑠𝑖𝑛5𝑥 est solution de l’équation 𝑦′′ + 25𝑦 = 0. 

Résoudre ou intégrer une équation différentielle d’ordre  𝒏, sur 

un intervalle ouvert 𝑲, c’est déterminer l’ensemble des fonctions 

solutions continues et dérivables 𝒏 𝒇𝒐𝒊𝒔 sur 𝑲 de cette équation. 

Chacune des fonctions solutions est une intégrale particulière 

de l’équation et l’ensemble des solutions constitue l’intégrale 

générale. 

Il arrive souvent, sauf pour quelques équations particulières, que 

l’intégrale générale puisse se décrire comme une famille de 

fonctions dépendant d’un ou de plusieurs paramètres. Les 

intégrales particulières qui ne peuvent pas s’exprimer par 

l’intermédiaire de cette expression générale et qui ainsi le 
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singularisent, prennent le nom d’intégrales singulières de 

l’équation. 

Dans de nombreux cas, si l’on dispose de l’intégrale générale 

sous la forme d’une famille de fonctions dépendant de 

paramètres, on peut déterminer ces paramètres pour obtenir 

l’intégrale particulière (si elle existe), satisfaisant à certaines 

conditions, généralement appelées conditions initiales. Ces 

conditions concernent en général les valeurs prises par la 

fonction ou certaines dérivées pour une valeur 𝑥0 de la variable 

(problème de Cauchy). 

Remarques : 

 

 Il est de coutume pour les équations différentielles de 

noter 𝑦 au lieu de 𝑦(𝑥)  et 𝑦′ au lieu de 𝑦′(𝑥) ; 
 La notion d’intervalle dans la résolution d’une équation 

différentielle est fondamentale. En changeant 

d’intervalle, d’autres solutions peuvent bien être 

obtenues. 

Exemple : Dans l’intervalle 𝐼1 = ]0 , + ∞[, l’équation 

différentielle 𝑦′ =
1

𝑥
 a pour solutions les fonctions 𝑦(𝑥) =

𝑙𝑛𝑥 + 𝑘 ; alors que dans l’intervalle 𝐼2 = ]− ∞ , 0[, les solutions 

sont les fonctions 𝑦(𝑥) = 𝑙𝑛(−𝑥) + 𝑘 (avec 𝑘 une constante). 

Si aucune précision n’est donnée sur l’intervalle 𝐼, on 

considérera qu’il s’agit de 𝐼 = ℝ. 

 

 Une équation différentielle est dite linéaire lorsque 

l’équation sans second membre associée vérifie les deux 

assertions suivantes : 

- pour toutes fonctions 𝑓 et 𝑔 solutions de 

l’équation sur un intervalle 𝐼, la fonction 𝑓 + 𝑔 

est aussi solution de l’équation sur 𝐼 ; 
- pout toute fonction 𝑓 solution de l’équation sur 

un intervalle 𝐼 et tout scalaire 𝜆 ∈ ℝ, la fonction 

𝜆𝑓 est aussi solution de l’équation sur 𝐼.  
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Il est à préciser qu’il n’existe pas de méthode mathématique 

universelle pour résoudre les équations différentielles. Il y a 

plutôt des méthodes plus particulièrement adaptées à telle ou 

telle autre équation différentielle. Aussi, il existe des équations 

différentielles qui résistent encore à tout traitement analytique. 

Des méthodes d’intégrations approchées sont alors utilisées. 

La courbe représentative d’une solution d’une équation 

différentielle est appelée courbe intégrale ou chronique de 

cette équation. 

Notons que souvent, quand on parle d'équation différentielle, on 

sous-entend qu'elle est ordinaire (EDO), c'est-à-dire que les 

fonctions inconnues ne dépendent que d'une seule variable. 

Lorsque les fonctions inconnues recherchées dépendent de 

plusieurs variables, on parle d’équation aux dérivées partielles 

(EDP). 

 

    2.2. Quelques types d’équations différentielles 

– Equations différentielles linéaires du premier ordre, à 

coefficients constants, sans second membre  

Ce sont les équations du type : 𝑎𝑦′ + 𝑏𝑦 = 0,  avec (𝑎 , 𝑏) ∈ ℝ2 

Les solutions sont de la forme : 𝑦(𝑥) = 𝐶𝑒− 
𝑏

𝑎
𝑥
, avec 𝐶 ∈ ℝ. 

– Equations différentielles linéaires du premier ordre, à 

coefficients constants avec second membre constant 

Ce sont les équations de la forme 𝑎𝑦′ + 𝑏𝑦 = 𝑐, avec 

(𝑎 , 𝑏 , 𝑐) ∈ ℝ3 

Les solutions s’écrivent : 𝑦(𝑥) = 𝐾𝑒− 
𝑏

𝑎
𝑥 +

𝑐

𝑏
 , avec 𝐾 ∈ ℝ. 

– Equations différentielles linéaires du premier ordre, à 

coefficients constants avec second membre variable 

Ce sont les équations de la forme : 𝑎𝑦′ + 𝑏𝑦 = 𝑓(𝑥), avec 

(𝑎 , 𝑏) ∈ ℝ2 et 𝑓 une fonction             

Les solutions prennent la forme : 𝑦(𝑥) = 𝐾𝑒−
𝑏

𝑎
𝑥 + 𝑝(𝑥), avec 𝐾 

une constante et 𝑝(𝑥) une solution particulière. 
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    2.3. Exemples de résolution d’équations différentielles 

       a) Equations différentielles linéaires du second ordre, à 

coefficients constants sans second membre 

Ces équations se présentent sous la forme : 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 =
0, avec 𝑎 ∈ ℝ, 𝑏 ∈ ℝ , 𝑐 ∈ ℝ. 

Soit 𝑟 ∈ ℝ et 𝑦 la fonction : 𝑥 ⟼ 𝑒𝑟𝑥 

On a 𝑦′ = 𝑟𝑒𝑟𝑥 = 𝑟𝑦 et 𝑦′′ = 𝑟2𝑒𝑟𝑥 = 𝑟2𝑦. 

On en déduit que 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑎𝑟2𝑦 + 𝑏𝑟𝑦 + 𝑐𝑦 =
(𝑎𝑟2 + 𝑏𝑟 + 𝑐)𝑦. 

𝑦 est solution de l’équation si et seulement si : 𝑎𝑟2 + 𝑏𝑟 + 𝑐 =
0. 

Par définition, l’équation 𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 est appelée 

équation caractéristique de l’équation différentielle : 𝑎𝑦′′ +
𝑏𝑦′ + 𝑐𝑦 = 0. 

Numérotons l’équation 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0            (1) 

Résolution : Soit 𝑦 une fonction deux fois dérivable sur ℝ et 𝑧 

la fonction : 𝑥 ⟼ 𝑦(𝑥)𝑒
𝑏

2𝑎
𝑥
. 

On a : ∀ 𝑥 ∈ ℝ : 

𝑦(𝑥) = 𝑧(𝑥)𝑒−
𝑏
2𝑎

𝑥
 

𝑦′(𝑥) = 𝑧′(𝑥)𝑒− 
𝑏
2𝑎

𝑥 −
𝑏

2𝑎
𝑧(𝑥)𝑒− 

𝑏
2𝑎

𝑥

= [𝑧′(𝑥) −
𝑏

2𝑎
𝑧(𝑥)] 𝑒− 

𝑏
2𝑎

𝑥
 

𝑦′′(𝑥) = [𝑧′′(𝑥) −
𝑏

2𝑎
𝑧′(𝑥)] 𝑒− 

𝑏
2𝑎

𝑥

−
𝑏

2𝑎
[𝑧′(𝑥) −

𝑏

2𝑎
𝑧(𝑥)] 𝑒− 

𝑏
2𝑎

𝑥
 

𝑦′′(𝑥) = [𝑧′′(𝑥) −
𝑏

𝑎
𝑧′(𝑥) +

𝑏2

4𝑎2
𝑧(𝑥)] 𝑒− 

𝑏
2𝑎

𝑥
 

On en déduit que 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0 ⇔  
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𝑎 [𝑧′′(𝑥) −
𝑏

𝑎
𝑧′(𝑥) +

𝑏2

4𝑎2
𝑧(𝑥)] 𝑒−

𝑏
 2𝑎

𝑥

+ 𝑏 [𝑧′(𝑥) −
𝑏

2𝑎
𝑧(𝑥)] 𝑒− 

𝑏
2𝑎

𝑥 + 𝑐𝑧(𝑥)𝑒− 
𝑏
2𝑎

𝑥

= 0 

[𝑎𝑧′′(𝑥) − 𝑏𝑧′(𝑥) +
𝑏2

4𝑎
𝑧(𝑥) + 𝑏𝑧′(𝑥) −

𝑏2

2𝑎
𝑧(𝑥)

+ 𝑐𝑧(𝑥)] 𝑒− 
𝑏
2𝑎

𝑥 = 0 

[𝑎𝑧′′(𝑥) + (−
𝑏2

4𝑎
+ 𝑐) 𝑧(𝑥)] 𝑒− 

𝑏
2𝑎

𝑥 = 0 

𝑎𝑧′′(𝑥) + (−
𝑏2

4𝑎
+ 𝑐) 𝑧(𝑥) = 0 

𝑧′′(𝑥) + (−
𝑏2

4𝑎2
+

𝑐

𝑎
) 𝑧(𝑥) = 0 

𝑧′′(𝑥) + (
4𝑎𝑐 − 𝑏2

2𝑎2
) 𝑧(𝑥) = 0 

                                                  𝑧′′(𝑥) − (
𝑏2−4𝑎𝑐

2𝑎2 ) 𝑧(𝑥) = 0                                                  

Numérotons l’équation 𝑧′′(𝑥) − (
𝑏2−4𝑎𝑐

2𝑎2 ) 𝑧(𝑥) = 0                (1′) 

On pose ∆= 𝑏2 − 4𝑎𝑐, le discriminent de l’équation 

caractéristique de l’équation différentielle (1). 

1er cas : ∆= 0 

Les solutions de (1′) sont les fonctions 𝑧(𝑥) = 𝐴𝑥 + 𝐵 avec ∈
ℝ , 𝐵 ∈ ℝ. 

Les solutions de l’équation (1) s’écrivent alors : 𝑦(𝑥) =

(𝐴𝑥 + 𝐵)𝑒− 
𝑏

2𝑎
𝑥
 

C’est-à-dire : 𝑦(𝑥) = (𝐴𝑥 + 𝐵)𝑒𝑟𝑥  où 𝑟 est la solution double 

de l’équation caractéristique. 

2ème cas : ∆ > 0 
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Les solutions de (1′) s’écrivent (𝑥) = 𝐴𝑒
√∆

2
𝑥 + 𝐵𝑒− 

√∆

2
𝑥
 avec ∈

ℝ , 𝐵 ∈ ℝ. 

Les solutions de l’équation (1) sont alors : 𝑦(𝑥) =

𝐴𝑒
(− 

𝑏

2𝑎
+

√∆

2
)𝑥

+ 𝐵𝑒
(− 

𝑏

2𝑎 
− 

√∆

2
)𝑥

 

C’est-à-dire : 𝑦(𝑥) = 𝐴𝑒𝑟1𝑥 + 𝐵𝑒𝑟2𝑥 

Où 𝑟1 et 𝑟2 sont les solutions réelles de l’équation caractéristique. 

3ème cas : ∆ < 0 

Les solutions de l’équation (1′) s’écrivent : 𝑧(𝑥) =

𝐴𝑐𝑜𝑠
√−∆

2
𝑥 + 𝐵𝑠𝑖𝑛

√−∆

2
𝑥 avec ∈ ℝ , 𝐵 ∈ ℝ. 

Les solutions de l’équation (1) sont : 𝑦(𝑥) =

𝑒− 
𝑏

2𝑎
𝑥 (𝐴𝑐𝑜𝑠

√−∆

2
𝑥 + 𝐵𝑠𝑖𝑛

√−∆

2
𝑥) 

C’est-à-dire : 𝑦(𝑥) = 𝑒𝛼𝑥(𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥) 

avec 𝛼 + 𝑖𝛽 et 𝛼 − 𝑖𝛽 les solutions complexes de l’équations 

caractéristiques. 

 

           b) Résolution par la méthode de la variation de la 

constante 

La méthode de variation de la constante, parfois appelée 

méthode de Lagrange est une méthode de résolution d’équations 

différentielles avec second membre connaissant la solution de 

l’équation homogène (sans second membre). Elle trouve son 

nom de ce que, pour l’essentiel, elle consiste à chercher les 

solutions sous une forme analogue à celle déjà trouvée pour une 

équation associée plus simple, mais en remplaçant la (ou les) 

constante(s) de cette solution par de nouvelles fonctions 

inconnues. La méthode a été initiée par le mathématicien franco-

italien Joseph Louis Lagrange puis généralisée par le 

mathématicien et physicien français Pierre Simon de Laplace 

pour la résolution des équations différentielles linéaires. 

 

 

 



 

229 

IS
B

N
 :

 9
7
8

-2
-4

9
3
6
5
9

-1
2

- 
5
  

  
  
  

  
  
  
  
  
  

  
  

  
  
  

  
  
  
  
  
  

  
 

 

V
O

L
 4

 N
 °

 1
2

 J
u

in
 2

0
2

5
 

 

Soit l’équation différentielle linéaire du premier ordre, avec 

second membre, suivant : 

𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥) = 𝑐(𝑥) 

La solution globale 𝑦 recherchée est la somme de la solution 

homogène 𝑦ℎ et de la solution particulière 𝑦𝑝. Soit 𝑦(𝑥) =

𝑦ℎ(𝑥) + 𝑦𝑝(𝑥). 

Recherche de la solution homogène : 

On considère l’équation homogène associée :  𝑎(𝑥)𝑦ℎ
′(𝑥) +

𝑏(𝑥)𝑦ℎ(𝑥) = 0 

On peut écrire : 𝑎(𝑥)𝑦ℎ
′(𝑥) = −𝑏(𝑥)𝑦ℎ(𝑥) ⟺ 

𝑦ℎ
′(𝑥)

𝑦ℎ(𝑥)
= −

𝑏(𝑥)

𝑎(𝑥)
. 

En intégrant, on trouve que : 

∫
𝑦ℎ

′(𝑥)

𝑦ℎ(𝑥)
𝑑𝑥 = −∫

𝑏(𝑥)

𝑎(𝑥)
𝑑𝑥 ⟺ ln 𝑦ℎ(𝑥) + 𝐶1 = −∫

𝑏(𝑥)

𝑎(𝑥)
𝑑𝑥, avec 

𝐶1 une constante. 

En prenant l’exponentielle de cette égalité, on trouve que : 

𝑒ln𝑦ℎ(𝑥)+𝐶1 = 𝑒
−∫

𝑏(𝑥)

𝑎(𝑥)
𝑑𝑥

  ⟺  𝑦ℎ(𝑥)𝑒𝐶1 = 𝑒
−∫

𝑏(𝑥)

𝑎(𝑥)
𝑑𝑥

 

Ce qui donne encore : 𝑦ℎ(𝑥) = 𝑒−𝐶1𝑒
−∫

𝑏(𝑥)

𝑎(𝑥)
𝑑𝑥

 ⟺  𝑦ℎ(𝑥) =

𝐶𝑒
−∫

𝑏(𝑥)

𝑎(𝑥)
𝑑𝑥

, avec 𝐶 = 𝑒−𝐶1 qui est non nulle. 

Soit 𝐹 la primitive présente dans l’exponentiel, on note : 𝐹(𝑥) =

∫
𝑏(𝑥)

𝑎(𝑥)
𝑑𝑥  ⟺ 𝐹′(𝑥) =

𝑏(𝑥)

𝑎(𝑥)
. 

Ce qui nous donne l’écriture suivante de 𝑦ℎ(𝑥) :  𝑦ℎ(𝑥) =

𝐶𝑒−𝐹(𝑥) 
Recherche de la solution particulière : Utilisation de la méthode 

de la variation de la constante 

L’idée est de supposer que la solution particulière 𝑦𝑝 doit être 

assez proche de la forme de la solution homogène 𝑦ℎ car 

provenant de l’équation différentielle homogène de la même 

équation différentielle linéaire. C’est une méthode souvent 

qualifiée de méthode à la physicienne. 
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Afin de rester proche de la forme de la solution particulière 𝑦𝑝, 

on rend la constante variable : 𝐶 = 𝐶(𝑥) ; d’où le nom de la 

méthode (variation de la constante). 

Ains, on pose : 𝑦𝑝(𝑥) = 𝐶(𝑥)𝑒−𝐹(𝑥), dès lors, on a : 𝑦𝑝
′(𝑥) =

𝐶′(𝑥)𝑒−𝐹(𝑥) − 𝐶(𝑥)𝐹′(𝑥)𝑒−𝐹(𝑥) 
 

L’équation différentielle linéaire du premier ordre, avec second 

membre, devient : 

 

𝑎(𝑥)[𝐶′(𝑥)𝑒−𝐹(𝑥) − 𝐶(𝑥)𝐹′(𝑥)𝑒−𝐹(𝑥)] + 𝑏(𝑥)𝐶(𝑥)𝑒−𝐹(𝑥)

= 𝑐(𝑥) 

Soit encore : 𝑎(𝑥)𝐶′(𝑥)𝑒−𝐹(𝑥) − 𝑎(𝑥)𝐶(𝑥)𝐹′(𝑥)𝑒−𝐹(𝑥) +

𝑏(𝑥)𝐶(𝑥)𝑒−𝐹(𝑥) = 𝑐(𝑥) 

On sait que (𝑒−𝐹(𝑥))
′
= −𝐹′(𝑥)𝑒−𝐹(𝑥), ce qui nous permet 

d’écrire :  

 𝑎(𝑥)𝐶′(𝑥)𝑒−𝐹(𝑥) + 𝑎(𝑥)𝐶(𝑥)(𝑒−𝐹(𝑥))
′
+ 𝑏(𝑥)𝐶(𝑥)𝑒−𝐹(𝑥) =

𝑐(𝑥) 

En factorisant par 𝐶(𝑥), il vient : 

 𝑎(𝑥)𝐶′(𝑥)𝑒−𝐹(𝑥) + 𝐶(𝑥) [𝑎(𝑥)(𝑒−𝐹(𝑥))
′
+ 𝑏(𝑥)𝑒−𝐹(𝑥)] =

𝑐(𝑥) 

𝑦ℎ(𝑥) = 𝐶𝑒−𝐹(𝑥) est solution de l’équation différentielle 

homogène associée, à savoir : 

𝑎(𝑥)(𝐶𝑒−𝐹(𝑥))
′
+ 𝑏(𝑥)𝐶𝑒−𝐹(𝑥) = 0 ⟺ 𝐶 [𝑎(𝑥)(𝑒−𝐹(𝑥))

′
+

𝑏(𝑥)𝐶𝑒−𝐹(𝑥)] = 0 

Comme 𝐶 est non nulle, cela signifie que : 𝑎(𝑥)(𝑒−𝐹(𝑥))
′
+

𝑏(𝑥)𝐶𝑒−𝐹(𝑥) = 0 

On obtient donc : 𝑎(𝑥)𝐶′(𝑥)𝑒−𝐹(𝑥) + 𝐶(𝑥) × 0 = 𝑐(𝑥)  ⟺  

𝑎(𝑥)𝐶′(𝑥)𝑒−𝐹(𝑥) = 𝑐(𝑥)   

Il vient : 𝐶′(𝑥)𝑒−𝐹(𝑥) =
𝑐(𝑥)

𝑎(𝑥)
   ⟺   𝐶′(𝑥) =

𝑐(𝑥)

𝑎(𝑥)
𝑒𝐹(𝑥) 
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En intégrant, on trouve que : ∫𝐶′(𝑥) 𝑑𝑥 = ∫
𝑐(𝑥)

𝑎(𝑥)
𝑒𝐹(𝑥)𝑑𝑥     ⟺   

𝐶(𝑥) = ∫
𝑐(𝑥)

𝑎(𝑥)
𝑒𝐹(𝑥)𝑑𝑥 

La solution particulière prend alors la forme : 𝑦𝑝(𝑥) =

∫
𝑐(𝑥)

𝑎(𝑥)
𝑒𝐹(𝑥)𝑑𝑥𝑒−𝐹(𝑥) 

Recherche de la solution globale : 

La solution globale 𝑦 de l’équation différentielle linéaire du 

premier ordre avec second membre est donc, par linéarité, la 

somme des deux solutions trouvées précédemment. 

𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) 

A savoir : 𝑦(𝑥) = 𝐶𝑒−𝐹(𝑥) + ∫
𝑐(𝑥)

𝑎(𝑥)
𝑒𝐹(𝑥)𝑑𝑥 𝑒−𝐹(𝑥) 

Finalement, en factorisant par 𝑒−𝐹(𝑥), on obtient le résultat :  

𝑦(𝑥) = [𝐶 + ∫
𝑐(𝑥)

𝑎(𝑥)
𝑒𝐹(𝑥)𝑑𝑥] 𝑒−𝐹(𝑥) 

Ou encore : 𝑦(𝑥) = [𝐶 + ∫
𝑐(𝑥)

𝑎(𝑥)
𝑒

∫
𝑏(𝑥)

𝑎(𝑥)
𝑑𝑥

𝑑𝑥] 𝑒−𝐹(𝑥) 

Dans les trois processus de primitivation, il faut mettre les 

constantes d’intégration à zéro.  

La constante d’intégration 𝐶 présente dans la solution générale 

sera déterminée à l’aide d’une condition particulière ou d’une 

condition initiale. 

Exemple 

Soit à résoudre l’équation différentielle (𝐸) : (𝑥 + 1)𝑦′(𝑥) +
𝑥𝑦(𝑥) = (𝑥 + 1)2 

On a 𝑦′(𝑥) = −
𝑥

𝑥+1
𝑦(𝑥) +

(𝑥+1)2

𝑥+1
= −

𝑥

𝑥+1
𝑦(𝑥) + (𝑥 + 1) 

(𝐸) est définie sur ]−∞ , −1[ et sur ]−1 , +∞[ 
Résolution de l’équation homogène associée : 𝑦ℎ

′(𝑥) =

−
𝑥

𝑥+1
𝑦ℎ(𝑥) 

On a −
𝑥

𝑥+1
= −

𝑥+1−1

𝑥+1
= −1 +

1

𝑥+1
.  
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Soit 𝐴(𝑥) une primitive de −
𝑥

𝑥+1
, on a : 𝐴(𝑥) = −𝑥 +

ln(|𝑥 + 1|). 

Les solutions de (𝐸) sont les fonctions 𝑦ℎ(𝑥) = 𝐶𝑒−𝑥+ln(|𝑥+1|), 

𝐶 ∈ ℝ.  

Soit 𝑦ℎ(𝑥) = 𝐶(|𝑥 + 1|)𝑒−𝑥, ou encore : 𝑦ℎ(𝑥) = 𝐶(𝑥 +
1)𝑒−𝑥, 𝐶 ∈ ℝ. 

Recherche d’une solution particulière par la méthode de la 

variation de la constante : 

Choisissons une solution de l’équation homogène qui ne 

s’annule pas : 𝑦0(𝑥) = (𝑥 + 1)𝑒−𝑥. 

On cherche la solution particulière sous la forme : 𝑦𝑝(𝑥) =

𝑐(𝑥)𝑦0(𝑥) = 𝑐(𝑥)(𝑥 + 1)𝑒−𝑥. 

𝑐′(𝑥) =
𝑏(𝑥)

𝑦0(𝑥)
=

𝑥 + 1

(𝑥 + 1)𝑒−𝑥
= 𝑒𝑥 

Une primitive de 𝑒𝑥 est 𝑒𝑥, donc 𝑐(𝑥) = 𝑒𝑥 convient. 

Finalement, une solution particulière est donnée par : 𝑦𝑝(𝑥) =

𝑒𝑥(𝑥 + 1)𝑒−𝑥 = 𝑥 + 1 

L’ensemble des solutions de (𝐸) s’obtient en additionnant la 

solution particulière aux solutions de l’équation homogène. Ce 

sont donc les fonctions :  

𝑦(𝑥) = (𝑥 + 1) + 𝐶(𝑥 + 1)𝑒−𝑥, 𝐶 ∈ ℝ 

 

3.  Applications dans le programme de physique sénégalais 

de terminale scientifique 

 

Les équations différentielles sont cruciales pour 

modéliser des systèmes en physique, tels que les mouvements 

des corps, la diffusion de la chaleur, les circuits électriques, 

l’évolution de la population d’une source radioactive, les 

champs électriques et magnétiques, … Elles permettent de 

prédire le comportement des systèmes sous diverses conditions.  
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La manière d’étudier les phénomènes physiques à l’aide des 

équations différentielles se résume généralement en trois 

étapes :  

 

– identification d’une loi théorique à appliquer au système à 

étudier ; 

– établissement de l’équation différentielle traduisant le 

phénomène étudié par application de la loi physique (mise en 

équation) ; 

– résolution de l’équation différentielle (ou vérification de 

solution). 

 

En physique, on s’intéressera particulièrement à des fonctions 

du temps et donc, aux dérivées temporelles. Nous allons traiter 

quelques exemples de systèmes physiques, tirés du programme 

sénégalais de niveau terminal scientifique, et dont l’évolution est 

régie par une équation différentielle. 
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    3.1. En mécanique 

        3.1.1. Mouvement de chute dans un fluide 

Un solide en mouvement de chute dans un 

fluide est soumis, en plus de son poids 𝑃⃗  :  
 

 à la poussée d’Archimède 𝐹 𝐴 : force 

verticale dirigée de bas en haut et dont 

l’intensité est égale au poids du fluide 

déplacé : 

 𝐹 𝐴 = −𝑚𝑓 ⋅ 𝑔 = −𝜌𝑓𝑉 ⋅ 𝑔 , où 𝜌𝑓 est 

la masse volumique de fluide et 𝑉, le 

volume du fluide déplacé. 

 à une force de frottement qui a la 

même direction que le vecteur vitesse 

du solide, mais de sens opposé. 

Pour les faibles vitesses, la valeur de 

cette force de frottement est 

proportionnelle à la valeur de la 

vitesse. Pour une sphère de rayon 𝑅 se déplaçant dans un 

fluide de coefficient de viscosité 𝜂, l’expression de la 

force de frottement est donnée par la formule de Stokes : 

𝑓 = − 6𝜋𝜂𝑅 ∙ 𝑣  
Application du théorème du centre d’inertie :  

𝑃⃗ + 𝐹 𝐴 + 𝑓 = 𝑚 ⋅ 𝑎   

Suivant un axe vertical 𝑧′𝑧 orienté vers le bas, on a 𝑃 − 𝐹𝐴 −
𝑓 = 𝑚𝑎  

⇒ 𝑚𝑔 − 𝜌𝑓𝑉𝑔 − 6𝜋𝜂𝑅𝑣 = 𝑚
𝑑𝑣

𝑑𝑡
 , si 𝜌 est la masse volumique 

de la substance qui constitue la bille, alors 𝑚 = 𝜌𝑉 et l’équation 

devient : 𝜌𝑉𝑔 − 𝜌𝑓𝑉𝑔 − 6𝜋𝜂𝑅𝑣 = 𝑚
𝑑𝑣

𝑑𝑡
  ⇒ 𝑚

𝑑𝑣

𝑑𝑡
+ 6𝜋𝜂𝑅 ⋅ 𝑣 =

(𝜌 − 𝜌𝑓)𝑉𝑔 

Figure 1 : 
Mouvement de 
chute dans un 
fluide 
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Le volume 𝑉 d’une sphère de rayon  𝑅 est donné par 

l’expression : 𝑉 =
4

3
𝜋𝑅3. 

Remplaçons dans l’équation ci-dessus : 𝑚
𝑑𝑣

𝑑𝑡
+ 6𝜋𝜂𝑅 ⋅ 𝑣 =

(𝜌 − 𝜌𝑓) ×
4

3
𝜋𝑅3𝑔 ;  

𝑚
𝑑𝑣

𝑑𝑡
+ 6𝜋𝜂𝑅 ⋅ 𝑣 =

4𝜋𝑅3

3
𝑔(𝜌 − 𝜌𝑓) 

Cette équation met en jeu la fonction vitesse 𝑣(𝑡) et sa dérivée 

première 
𝑑𝑣(𝑡)

𝑑𝑡
. 

 

3.1.2. Le pendule pesant 

On appelle pendule pesant tout système 

mobile autour d’un axe () (en principe 

horizontale), ne passant pas par son centre 

de gravité et placé dans le champ de 

pesanteur.  

 

 

Le système est soumis à son poids 𝑃⃗  et à la 

réaction 𝑅⃗  de l’axe. 

 

 

Application du théorème de l’accélération 

angulaire :  

𝑀Δ(𝑃⃗ ) + 𝑀Δ(𝑅⃗ ) =  𝐽Δ
𝑑2𝜃

𝑑𝑡2
 

avec 𝑀Δ(𝑃⃗ ) = −𝑃 × 𝑂𝐺𝑠𝑖𝑛𝜃 = −𝑚𝑔𝑑𝑠𝑖𝑛𝜃 et 𝑀Δ(𝑅⃗ ) = 0 

Soit = −𝑚𝑔𝑑𝑠𝑖𝑛𝜃 = 𝐽Δ
𝑑2𝜃

𝑑𝑡2  , équivaut à 
𝑑2𝜃

𝑑𝑡2 +
𝑚𝑔𝑑

𝐽Δ
∙ 𝑠𝑖𝑛𝜃 = 0 

Pour les oscillations de faibles apmlitudes, on a 𝑠𝑖𝑛𝜃 ≈ 𝜃. Ce 

qui permet d’écrire : 

𝑑2𝜃

𝑑𝑡2
+

𝑚𝑔𝑑

𝐽Δ
𝜃 = 0 

Figure 2 : Pendule 
pesant 
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On a une relation entre l’abscisse angulaire 𝜃(𝑡) et sa dérivés 

seconde 
𝑑2𝜃(𝑡)

𝑑𝑡2
. 

4.1.3. Le pendule élastique horizontal 

Le pendule est constitué d’un ressort de constante de raideur 𝑘 

relié à un solide (S) de masse 𝑚 qui porte une plaquette de masse 

négligeable plongeant dans un fluide. 

Le solide (S) est soumis : 

– à son poids 𝑃⃗  ; 

– à la réaction 𝑅⃗  exercée par la tige ;  

– à la tension 𝑇⃗  exercée par le fil ; 

– à la force de frottement fluide (ou visqueux) 𝑓 . 

Par application du T.C.I., on a 𝑃⃗ + 𝑅⃗ + 𝑇⃗ + 𝑓 = 𝑚𝑎 . 

La projection sur (𝑂, 𝑖 ) donne −𝑇 − 𝑓 = 𝑚𝑎, soit −𝑘𝑥 − 𝜆𝑣 =

𝑚
𝑑2𝑥

𝑑𝑡2. 

En remplaçant 𝑣 par 
𝑑𝑥

𝑑𝑡
, il vient : 

𝑑2𝑥

𝑑𝑡2
+

𝜆

𝑚

𝑑𝑥

𝑑𝑡
+

𝑘

𝑚
𝑥 = 0 

                                         Figure 3 : Pendule élastique horizontal 
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Cette équation contient la fonction 𝑥(𝑡), abscisse du centre 

d’inertie du solide, sa dérivée première 
𝑑𝑥(𝑡)

𝑑𝑡
 et sa dérivée 

seconde 
𝑑2𝑥(𝑡)

𝑑𝑡2 . 

     

    3.2. En électricité 

       3.2.1. Etablissement du courant dans un circuit (R,L) 

Considérons le montage ci-contre. 

A la 

fermeture de l’interrupteur K, le générateur délivre un courant 𝑖 
qui traverse la bobine et le résistor. 

Ecrivons la loi des tensions : 

 𝑢𝑅 + 𝑢𝐿 = 𝐸 

𝑢𝑅 = 𝑅𝑖 ; 𝑢𝐿 = 𝑟𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
 ;  

⇒ 𝐿
𝑑𝑖

𝑑𝑡
+ (𝑅 + 𝑟)𝑖 = 𝐸, d’où  

𝑑𝑖

𝑑𝑡
+

𝑅 + 𝑟

𝐿
𝑖 =

𝐸

𝐿
 

Cette équation lie l’intensité du courant 𝑖(𝑡) et sa dérivée 

première 
𝑑𝑖(𝑡)

𝑑𝑡
. 

 

 

         Figure 4 : Etablissement du courant à travers une bobine 
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    3.2.2. Charge d’un condensateur 

Un condensateur de capacité 𝐶 

est chargé par un générateur de 

f.e.m. 𝐸, à travers un conducteur 

ohmique de résistance 𝑅. (K en 

position 1)  

Lorsque la charge passe de la 

valeur 𝑞 à l’instant 𝑡  à la valeur 

𝑞 + 𝑑𝑞 à l’instant +𝑑𝑡 (𝑑𝑞 >

0), on a 𝑖 =
𝑑𝑞

𝑑𝑡
. 

Loi des tensions (convention 

récepteur pour le condensateur) : 

𝑢𝐶 + 𝑢𝑅 = 𝐸 , avec 𝑢𝐶 =
𝑞

𝑐
 et 

𝑢𝑅 = 𝑅𝑖 = 𝑅
𝑑𝑞

𝑑𝑡
 

𝑞

𝐶
+ 𝑅

𝑑𝑞

𝑑𝑡
= 𝐸, soit  

𝑑𝑞

𝑑𝑡
+

1

𝑅𝐶
𝑞 =

𝐸

𝑅
 

Une relation s’établit entre la fonction 𝑞(𝑡) et sa dérivée 

première 
𝑑𝑞(𝑡)

𝑑𝑡
. 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 5 : Charge d'un 
condensateur 
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      3.2.3. Circuit (R,L,C) en oscillations libres 

Un condensateur de 

capacité 𝐶, initialement 

chargé à l’aide d’un 

générateur de f.e.m. 𝐸 

(interrupteur en position 

1) est monté en série 

avec une bobine 

d’inductance 𝐿 et de 

résistance négligeable, 

et un conducteur ohmique de 

résistance 𝑅 (interrupteur en position 2).   

La loi des tensions s’écrit : 𝑢𝑅 + 𝑢𝐿 + 𝑢𝐶 = 0  avec 𝑢𝑅 = 𝑅𝑖 =

𝑅
𝑑𝑞

𝑑𝑡
 ; 𝑢𝐿 = 𝐿

𝑑𝑖

𝑑𝑡
= 𝐿

𝑑2𝑞

𝑑𝑡2  ; 𝑢𝐶 =
𝑞

𝐶
 

 ⇒ 𝑅
𝑑𝑞

𝑑𝑡
+ 𝐿

𝑑2𝑞

𝑑𝑡2 +
𝑞

𝐶
= 0 ; soit 

𝑑2𝑞

𝑑𝑡2
+

𝑅

𝐿

𝑑𝑞

𝑑𝑡
+

1

𝐿𝐶
𝑞 = 0 

Dans cette équation, la fonction 𝑞(𝑡), charge du condensateur, 

est liée à sa dérivée première 
𝑑𝑞(𝑡)

𝑑𝑡
 et sa dérivée seconde 

𝑑2𝑞(𝑡)

𝑑𝑡2 . 

 

     3.3. En physique nucléaire : La radioactivité 

Soit 𝑁 le nombre de noyaux d’une source radioactive à l’instant 

𝑡 et 𝑁 + 𝑑𝑁 leur nombre à l’instant infiniment voisin 𝑡 + 𝑑𝑡.  

Le nombre de noyaux désintégrés entre les instants 𝑡 et 𝑡 + 𝑑𝑡 

est 𝑁 − (𝑁 + 𝑑𝑁) = − 𝑑𝑁. Ce nombre est proportionnel : 

– au nombre de noyaux 𝑁 présents à l’instant 𝑡 ; 

– à la durée 𝑑𝑡. 

On écrit alors : − 𝑑𝑁 = 𝜆𝑁𝑑𝑡 avec 𝜆 une constante positive, 

caractéristique de la nature des noyaux, appelée constante 

radioactive. 

En transposant et en divisant par 𝑑𝑡, il vient : 

Figure 6 : Circuit (R,L,C) en régime libre 
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𝑑𝑁

𝑑𝑡
+ 𝜆𝑁 = 0 

La fonction du temps 𝑁(𝑡) représentant le nombre de noyaux 

radioactifs à l’instant 𝑡, est liée à sa dérivée première. 

 

3.4. Un exemple pratique sous forme d'exercice : 

Amortisseur de véhicule 

La suspension d'un véhicule permet d’atténuer les vibrations 

verticales qui nuisent au confort et à la sécurité des passagers, 

par exemple lors du 

passage du 

véhicule dans un 

trou sur une route 

(nid de poule). Elle 

est constituée au 

niveau de chaque 

roue d’un ressort et 

d’un amortisseur. On note G le centre d’inertie du véhicule. 

Lorsqu’on écarte le véhicule de sa position d’équilibre Go et 

qu’on le lâche, il oscille autour de cette position. L’amplitude 

des oscillations décroît suivant le degré d’amortissement de la 

suspension. L’ensemble du véhicule est équivalent à un 

oscillateur mécanique unique vertical amorti de masse 𝑚, de 

constante de raideur 𝑘. 

On étudie le mouvement du centre d'inertie G seulement suivant 

la verticale. On repère son ordonnée 𝑦 sur un axe 𝑂𝑦 orienté vers 

le haut. La position du centre d'inertie du système à l’équilibre 

Go (ressorts comprimés) est prise pour origine O de l'axe. 

Données : 

 Masse : 𝑚 = 1,5 ∙ 103𝑘𝑔 ; 

 Constante de raideur du ressort équivalent : 𝑘 = 6,0 ∙
105𝑁 ∙ 𝑚−1 ; 

 La force de frottement qui s’exerce sur le système de 

masse m  et opposée à la vitesse du point G suivant la 
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verticale, est de la forme : 𝐹 = −𝜆𝑣𝑦 ∙ 𝑗  , avec 𝑣𝑦  la 

coordonnée verticale de la vitesse du point G par rapport 

à l’axe de la roue et 𝜆 une constante positive appelée 

coefficient d'amortissement ou de frottement. 

On s'intéresse par la suite à l'influence de ce coefficient 

d'amortissement sur la qualité de la suspension. 

1° Oscillations libres de la suspension 

Le document ci-dessous donne trois courbes représentant 𝑦 =
𝑔(𝑡) pour trois véhicules dont seules les valeurs du coefficient 

d’amortissement sont différentes : 

 

Courbes Courbe n°1 Courbe n°2 Courbe n°3 

𝜆(104𝑘𝑔 ∙ 𝑠−1) 𝜆1 = 1,5 𝜆2 = 5 𝜆3 = 15 

 

 
1.1. Expliquer pourquoi les courbes n°1 et n°3 correspondent 

respectivement aux coefficients d’amortissement 𝜆1 et 𝜆3. 

1.2. L’une des courbes du document 1 est une sinusoïde amortie 

dont on définit la pseudo-période comme étant la durée entre 

deux maxima consécutifs. Déterminer graphiquement la valeur 

de cette pseudo-période 𝑇. 

1.3. Le régime critique est le meilleur pour le confort et la 

sécurité des passagers. Quelle valeur du coefficient 
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d'amortissement convient le mieux parmi les trois valeurs 

proposées ? 

 

 2° Test des amortisseurs, oscillations forcées 

Pour tester chacun des 

amortisseurs, on soumet 

les roues à une même 

excitation sinusoïdale 

produite par un support 

placé sous chaque roue. 

L’amplitude 𝑌𝑚 des 

oscillations du centre 

d'inertie G du véhicule 

dépend alors de deux 

facteurs : l’amplitude 𝑌𝐸 

et la fréquence 𝑓𝐸   de l’excitation sinusoïdale. La résolution des 

questions suivantes ne demande aucune mise en équation. On 

admettra que le comportement qualitatif du système s’apparente 

à celui d’un oscillateur amorti soumis à une force excitatrice 

sinusoïdale. 

L’amplitude 𝑌𝐸 de l’excitation sinusoïdale est maintenue 

constante. 

 
Le document ci-dessus donne les courbes représentant 𝑌𝑚 =
𝑔(𝑓𝐸) pour les trois valeurs du coefficient d’amortissement du 

paragraphe 1. 
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2.1. Que peut-on dire de l’amplitude 𝑌𝑚  à la résonance ? 

2.2. Pour le véhicule équipé de l'amortisseur de coefficient le 

plus faible, déterminer graphiquement la fréquence de résonance 

𝑓𝑟. Comparer sa valeur à la fréquence propre de l’oscillateur 

mécanique {masse, ressort}. On prend 
1

𝜋
= 0,3. 

2.3. Préciser à l’aide des courbes ci-dessus si la fréquence de 

résonance est fonction du coefficient d'amortissement. 

2.4. A la fréquence excitatrice 𝑓′ = 4,5 𝐻𝑧, l’amplitude des 

oscillations 𝑌𝑚 est la même pour les trois oscillateurs. Quel 

amortisseur faut-il choisir pour équiper le véhicule sachant que 

plus l’amplitude des oscillations est faible, meilleure est la 

qualité des amortisseurs : 

– pour les fréquences excitatrices 𝑓𝐸  telles que 𝑓𝐸 < 𝑓′ ? 

– pour des fréquences excitatrices 𝑓𝐸 > 𝑓′ ? 

Quel amortisseur donne le meilleur compromis quelle que soit 

la fréquence excitatrice ? 

 

Corrigé 

1° 

1.1. La courbe n°1 représente l’amortissement le plus faible (régime 

pseudo-périodique), donc elle correspond au coefficient 

d'amortissement le plus faible 𝜆1. 

La courbe n°3 représente l’amortissement le plus important (régime 

apériodique), elle correspond au coefficient d'amortissement le plus 

grand 𝜆3. 

1.2. Il s’agit de la courbe n°1 : on obtient à partir du graphe, la 

pseudo-période 𝑇 = 0,32 𝑠. 

Le régime critique correspond à la courbe 2. Le coefficient 

d’amortissement est 𝜆2 = 5 ∙ 104𝑘𝑔 ∙ 𝑠−1. 

2° 

2.1. A la résonance, l'amplitude 𝑌𝑚 passe par un maximum. 

2.2. Le coefficient d’amortissement le plus faible correspond à la 

courbe n°4 : la fréquence de résonance est 𝑓𝑟 = 3 𝐻𝑧. 

Calcul de la fréquence propre 
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On a 𝜔0 = √
𝑘

𝑚
 , donc 𝑇0 =

2𝜋

𝜔0
= 2𝜋√

𝑚

𝑘
, et 𝑓0 =

1

𝑇0
=

1

2𝜋
√

𝑘

𝑚
  A.N. : 

𝑓0 =
0,3

2
√

6,0∙105

1,5∙103 ; 𝑓0 = 3 𝐻𝑧 On trouve la même valeur : 𝑓0 = 𝑓𝑟. 

2.3. Pour la courbe n°5, la fréquence de résonance est proche de 

2,5 𝐻𝑧, alors qu’elle est de 3 𝐻𝑧 pour la courbe n°4 : donc la 

fréquence de résonance dépend du coefficient d'amortissement. 

2.4. 

– pour les fréquences excitatrices 𝑓𝐸 telles que 𝑓𝐸 < 𝑓′, la courbe n°6 

(𝜆3) correspond à l’amplitude la plus faible et donc au meilleur 

amortisseur. 

– pour des fréquences excitatrices 𝑓𝐸 > 𝑓′, la courbe n°4 (𝜆1) 
correspond à l’amplitude la plus faible et ainsi au meilleur 

amortisseur. 

La courbe n°5 (𝜆2) (amortissement moyen) correspond à un 

phénomène de résonance de faible amplitude et au-delà de 𝑓′, les 

amplitudes des oscillations sont moins importantes qu'avec un 

oscillateur très amorti. Cet amortisseur donne le meilleur compromis. 

 

Ces différents problèmes de physique, relevant de 

domaines différents, ont en commun l’existence de relations 

faisant intervenir à chaque fois une fonction et ses dérivées 

successives ; c’est-à-dire des équations différentielles, dont les 

mathématiciens ont formalisé leurs structures et élaboré des 

méthodes de résolution, fournissant ainsi aux physiciens un outil 

performant. Elles sont si importantes en physique-mathématique 

qu’on dit que « traiter mathématiquement un problème de 

physique revient `à trouver l’équation différentielle qui le 

décrit. », citation inspirée d’une synthèse de la pensée 

newtonienne. 

 

4. L’interdisciplinarité mathématiques-physique autour de 

l’objet de savoir équations différentielles 

 

Selon Lenoir et Sauvé (1998), l’interdisciplinarité  
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consiste en la mise en œuvre de deux ou plusieurs disciplines 

scolaires […] qui conduit à l’établissement de liens de 

complémentarité ou de coopération, d’interprétation ou 

d’actions réciproques entre elles sous divers aspects (finalités, 

objets d’étude, concepts et notions, démarches d’apprentissage 

et habiletés techniques, etc.), en vue de favoriser l’intégration 

des processus d’apprentissage et des savoirs chez les élèves. Elle 

assure en quelque sorte une dépendance réciproque entre 

disciplines scolaires et leurs interrelations sur le plan de leurs 

contenus et de leurs démarches, lesquelles sont nécessaires pour 

construire la réalité humaine, pour l’exprimer et pour interagir 

avec elle. La présentation que nous avons faite sur les équations 

différentielles et les applications en physique que nous avons 

illustrées, montrent la complexité du lien entre les 

mathématiques et la physique et la nécessité d’aborder les 

enseignements-apprentissages sur les équations différentielles et 

les notions physiques connexes par une approche 

interdisciplinaire. Les programmes sénégalais actuellement en 

vigueur sont orientés selon l’Approche par compétences (APC). 

Cette rénovation renforce encore la nécessité s’inscrire dans une 

dynamique didactique et pédagogique permettant de briser les 

barrières disciplinaires. L’interdisciplinarité doit constituer un 

levier fondamental pour réussir une intégration des acquis chez 

les apprenants. 

Pour une réelle opérationnalisation de la pédagogie de 

l’intégration des acquis, il faut d’abord une formation initiale et 

continue des enseignants à une pédagogie de 

l’interdisciplinarité. Des ateliers interdisciplinaires peuvent être 

organisés et des supports pédagogiques conçus ensemble entre 

professeurs, formateurs et inspecteurs des deux disciplines. Des 

séances de cours, de travaux dirigés et de travaux pratiques co-

animées par le professeur de mathématiques et celui de 

physique, permettraient de faire le point sur d’éventuelles 

nuances. En effet, les équations différentielles peuvent se 



 

246 

IS
B

N
 :

 9
7
8

-2
-4

9
3
6
5
9

-1
2

- 
5
  

  
  
  

  
  
  
  
  
  

  
  

  
  
  

  
  
  
  
  
  

  
 

 

V
O

L
 4

 N
 °

 1
2

 J
u

in
 2

0
2

5
 

présenter différemment selon le contexte mathématique ou 

physique. Les lettres et symboles ainsi que leurs significations, 

les méthodes ou techniques de résolution, la présentation des 

solutions, entre autres peuvent être différents d’une discipline à 

l’autre. Aussi, en physique, des méthodes de résolution non 

analytiques sont parfois utilisées. Il s’agit de méthodes 

approchées ou numériques lorsque les solutions exactes sont 

inaccessibles (méthode d’Euler, méthode de Runge-Kutta). Pour 

assurer une bonne complémentarité au cours de ces séances 

communes, des situations-problèmes interdisciplinaires 

pertinents pourraient être de bons déclencheurs et stimulateurs. 

Le professeur de mathématiques pourrait prendre en charge 

particulièrement les raisonnements théoriques et le professeur de 

physique les interprétations scientifiques. Cela éviterait la 

disjonction des apprentissages et exposerait les liens entre 

théorie et pratique, car les équations ne doivent pas être perçues 

par les apprenants comme de simples techniques de calcul ou 

outils de travail d’esprit, déconnectés de toute réalité physique. 

Pour aller plus loin, des sujets d’évaluation communs mobilisant 

des compétences en mathématiques et en physique pourraient 

être conçus afin d’offrir aux apprenants de véritables 

opportunités de situations d’intégration à partir de problèmes 

complexes. Cette dynamique permettrait d’harmoniser les 

progressions ainsi que les approches, tout en respectant la 

spécificité de chaque discipline. 

Au niveau institutionnel, les programmes pourraient être 

orientés vers le mode d’intégration que Roegiers appelle 

« regroupement de disciplines en thèmes intégrateurs ». Il s’agit 

d’une forme d’intégration qui, pour des disciplines qui 

poursuivent des objectifs complémentaires, exploite cette 

complémentarité en fusionnant les apprentissages relatifs à ces 

disciplines à l’occasion de modules que l’on construit pour 

l’apport des différentes disciplines. (Rogiers, 2001, p-111) 
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L’interdisciplinarité mathématiques-physique constitue 

une source d’enrichissement mutuel. Les mathématiques 

mettent à la disposition de la physique les équations 

différentielles comme un langage essentiel et indispensable pour 

le traitement de ses problèmes. En retour, les exigences en 

physique inspirent de nouvelles techniques de résolution 

mathématiques et par conséquent, posent de nouveaux défis.  

 

Conclusion 

 

Ces exemples d’équations différentielles traitées et les 

illustrations de leurs applications qui constituent des cas d’école 

extraits des programmes sénégalais des classes de terminales 

scientifiques prouvent combien les équations différentielles sont 

indispensables en physique. Elles offrent un cadre unifié pour 

modéliser et prédire plusieurs phénomènes naturels. Elles sont 

incontournables même dans le domaine de la recherche pour des 

avancée majeures dans plusieurs domaines de la physique. En 

retour, la forte implication des équations différentielles dans les 

processus d’apprentissage et de recherche en physique met en 

exergue la face concrète des mathématiques souvent éclipsée par 

l’aspect abstrait. La maîtrise des équations différentielles est 

cruciale pour réussir les enseignements-apprentissages des 

programmes de physique, mais aussi pour percer dans la 

recherche. Cette maitrise nécessite que les enseignements-

apprentissages soient arrimés à une approche interdisciplinaire 

bien structurée et planifiée entre enseignants de mathématiques 

et de physique. C’est la raison pour laquelle la collaboration 

entre collègues des deux disciplines est fortement recommandée 

pour l’exécution des programmes particulièrement sur les 

équations différentielles et les savoirs physiques connexes. 

L’interdisciplinarité mathématiques-physique autour des 

équations différentielles est un bel exemple paradigmatique de 

synergie entre théorie et pratique. Les équations différentielles 
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doivent jouer à la fois le rôle de croie de transmission et de 

crémaillère entre les mathématiques et la physique. Pendant que 

la physique bénéficie d’un outil puissant et incontournable, les 

mathématiques trouvent une source de problèmes stimulants 

avec continuellement de nouveaux défis qui motivent de 

nouvelles théories conduisant à élargir le champ des 

mathématiques. 
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